Search results for "Gromov hyperbolicity"
showing 2 items of 2 documents
Quasihyperbolic boundary condition: Compactness of the inner boundary
2011
We prove that if a metric space satisfies a suitable growth condition in the quasihyperbolic metric and the Gehring–Hayman theorem in the original metric, then the inner boundary of the space is homeomorphic to the Gromov boundary. Thus, the inner boundary is compact. peerReviewed
Gromov hyperbolicity and quasihyperbolic geodesics
2014
We characterize Gromov hyperbolicity of the quasihyperbolic metric space (\Omega,k) by geometric properties of the Ahlfors regular length metric measure space (\Omega,d,\mu). The characterizing properties are called the Gehring--Hayman condition and the ball--separation condition. peerReviewed